Numerical optimization and quasiconvexity
نویسندگان
چکیده
منابع مشابه
K-quasiconvexity Reduces to Quasiconvexity
The relation between quasiconvexity and k-quasiconvexity, k ≥ 2, is investigated. It is shown that every smooth strictly k-quasiconvex integrand with p-growth at infinity, p > 1, is the restriction to k-th order symmetric tensors of a quasiconvex function with the same growth. When the smoothness condition is dropped, it is possible to prove an approximation result. As a consequence, lower semi...
متن کاملHigher Order Quasiconvexity Reduces to Quasiconvexity
In this paper it is shown that higher order quasiconvex functions suitable in the variational treatment of problems involving second derivatives may be extended to the space of all matrices as classical quasiconvex functions. Precisely, it is proved that a smooth strictly 2-quasiconvex function with p-growth at infinity, p > 1, is the restriction to symmetric matrices of a 1-quasiconvex functio...
متن کاملQuasiconvexity and Amalgams
We obtain a criterion for quasiconvexity of a subgroup of an amalgamated free product of two word hyperbolic groups along a virtually cyclic subgroup. The result provides a method of constructing new word hyperbolic group in class (Q), that is such that all their finitely generated subgroups are quasiconvex. It is known that free groups, hyperbolic surface groups and most 3-dimensional Kleinian...
متن کاملQuasiconvexity versus Group Invariance
The lower invariance under a given arbitrary group of diffeomorphisms extends the notion of quasiconvexity. The non-commutativity of the group operation (the function composition) modifies the classical equivalence between lower semicontinuity and quasiconvexity. In this context null lagrangians are particular cases of integral invariants of the group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Applied Mathematics
سال: 1995
ISSN: 0956-7925,1469-4425
DOI: 10.1017/s0956792500001674